基于BP神经网络的城市智慧照明基础分级研究Basic Classification of Urban Intelligent Lighting Based on BP Neural Network
王超;张明宇;王锡铭;吴传德;
WANG Chao;ZHANG Mingyu;WANG Ximing;WU Chuande;Tianjin Key Laboratory of Architectural Physics and Environmental Technology,Tianjin University;
摘要(Abstract):
通过选取城市智慧照明规划指标体系中具有典型性和代表性的基础类指标,将中国60座城市的数据进行收集与分级,利用MATLAB平台的LM-BP神经网络对其中50座城市的750项数据进行学习,完成训练后,利用剩余10座城市的数据进行验证,预测结果的准确性达到100%,表明本实验系统具备对城市智慧照明发展基础的分级能力,为研究城市当前阶段智慧照明的评价内容与发展目标提供了一种基础研究方法。
By selecting the typical and representative basic indicators in the urban intelligent lighting planning index system, the data of 60 cities in China are collected and graded, and the LM-BP neural network of MATLAB platform is used to learn 750 items of data of 50 cities. After the training, the data of the remaining 10 cities are used for verification, and the accuracy of the prediction results reaches 100%. It shows that the experimental system has the ability of grading the development basis of urban smart city lighting, and provides a basic research method for the study of the evaluation content and development goals of urban smart lighting at the current stage.
关键词(KeyWords):
城市照明规划;智慧照明指标;BP神经网络
urban lighting planning;intelligent lighting index;LM-BP neural network
基金项目(Foundation):
作者(Authors):
王超;张明宇;王锡铭;吴传德;
WANG Chao;ZHANG Mingyu;WANG Ximing;WU Chuande;Tianjin Key Laboratory of Architectural Physics and Environmental Technology,Tianjin University;
参考文献(References):
- [1] 2016—2017年度中国新型智慧城市建设与发展综合影响力评估结果出炉[J].传感器世界,2017,23(2):44.
- [2] 住建部开展国家智慧城市试点工作[J].现代建筑电气,2012,3(12):41.
- [3] 魏巍.基于城市信息模型的新型智慧城市管理平台[J].智能城市,2020,6(7):116-117.
- [4] 郭则兰.智慧城市信息化建设水平测度研究[D].湘潭:湘潭大学,2018.
- [5] Wang Bo ,Chen Bowen ,Wang Gongqing ,et al.Back propagation (BP) neural network prediction and chaotic characteristics analysis of free falling liquid film fluctuation on corrugated plate wall[J].Annals of Nuclear Energy,2020,148:107711.
- [6] 王莉,郭晓东,惠延波.基于改进BP神经网络的心电信号分类方法[J].电子技术应用,2019,45(6):108-112.
- [7] 梁仁方.基于BP神经网络模型和NAR动态神经网络模型的期货跨品种套利策略对比研究[D].杭州:浙江财经大学,2016.
- [8] MacKay David J C.Bayesian Interpolation[J].Neural Computation,1992,4(3):415-447.
- [9] 乔佩利,王鸣云.Levenberg-Marquardt算法入侵检测系统[J].哈尔滨理工大学学报,2012,17(5):51-54.
- [10] 崔敏.基于Levenberg-Marquardt神经网络的个性化搜索算法研究与应用[D].重庆:重庆大学,2018.
- 王超
- 张明宇
- 王锡铭
- 吴传德
WANG Chao- ZHANG Mingyu
- WANG Ximing
- WU Chuande
- Tianjin Key Laboratory of Architectural Physics and Environmental Technology
- Tianjin University
- 王超
- 张明宇
- 王锡铭
- 吴传德
WANG Chao- ZHANG Mingyu
- WANG Ximing
- WU Chuande
- Tianjin Key Laboratory of Architectural Physics and Environmental Technology
- Tianjin University