照明工程学报

2019, v.30(06) 141-144+157

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Past Issue) | 高级检索(Advanced Search)

基于神经网络的学习空间热-光交互作用模型
The Study on the Heat-light Interaction Model of Learning Space Based on Artificial Neural Network

韩臻;张九红;王艺瑾;孙金玲;初金璐;景中奕;
HAN Zhen;ZHANG Jiuhong;WANG Yijin;SUN Jinling;CHU Jinlu;JING Zhongyi;School of Architecture and Urban Planning, Shenyang Jianzhu University;Northeastern University JangHo Architecture;

摘要(Abstract):

良好的物理环境是使用者高效进行视觉作业的必要条件,使用者能否将视觉效率发挥到最大与房间光源的照度、色温的等因素息息相关。研究发现,使用者的视觉效率不仅仅与光源的照度、色温等光学量有关,还与房间的温度、相对湿度等热学量存在一定的函数关系。本文通过创建500组不同的室内物理环境,研究学习空间热-光交互作用下使用者的视觉效率的变化情况,并运用神经网络建立物理环境量与视觉效率之间关系的预测模型。
A favorable physical environment is very important for users to perform visual operations efficiently, and whether the users can maximize the visual efficiency is related to the factors such as the illumination and the color temperature of the light source in the room. It is found that the visual efficiency of the user not only is related to the illuminance of the light source, the color temperature, but also has a certain functional relationship with the room temperature, relative humidity and other thermal quantities. In this paper, 500 different groups of indoor physical environment were created to study the change of visual efficiency of users under the heat-light interaction of learning space and a neural network model for predicting the relationship between physical environment and visual efficiency is built.

关键词(KeyWords): 热-光交互作用;学习空间;人工神经网络
heat-light interaction;learning space;artificial neural network

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金(基于知觉适应的寒地建筑室内外过渡空间热-光交互作用机理与评价体系研究)(编号:51678370);; 辽宁省高校创新团队支持计划(编号:LT2017002)

作者(Author): 韩臻;张九红;王艺瑾;孙金玲;初金璐;景中奕;
HAN Zhen;ZHANG Jiuhong;WANG Yijin;SUN Jinling;CHU Jinlu;JING Zhongyi;School of Architecture and Urban Planning, Shenyang Jianzhu University;Northeastern University JangHo Architecture;

Email:

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享