照明工程学报

2022, v.33(03) 148-154

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Past Issue) | 高级检索(Advanced Search)

一种基于长短期记忆神经网络的智慧路灯控制方法
A Smart Street Lamp Control Approach Based on Long Short-term Memory Networks

郑凯;林培杰;赖云锋;程树英;陈志聪;吴丽君;
ZHENG Kai;LIN Peijie;LAI Yunfeng;CHENG Shuying;CHEN Zhicong;WU Lijun;College of Physics and Information Engineering, Fuzhou University;

摘要(Abstract):

提出了一种基于长短期记忆神经网络的智慧路灯控制方法,实现了能够根据路面能见度情况进行自适应调光的智慧路灯。选择PM2.5、PM10、湿度、累积风速四种气象因子作为输入,采用长短期记忆神经网络实现对路面能见度的建模,并使用Adam算法优化模型。智慧路灯根据建模所得能见度与照度信息,在高能见度时,自动采用普通亮度与高色温照明模式,有效节约能源;在低能见度时输出更高的亮度与更低的色温,增强路灯透雾能力,保证路面照度符合需求。通过实验分析,该模型的预测值与真实能见度之间正则化均方根误差为0.13194、平均绝对误差为0.69785 km以及决定系数为0.85725,优于所选的对比模型。相比于传统路灯控制方式本文方法在保障车辆行驶安全的同时有更好的节能效果。
A smart street lamp control approach based on Long Short-Term Memory Network(LSTM) is proposed, which realizes a smart street lamp capable of adaptive dimming according to the visibility of the road. Four meteorological factors including PM2.5, PM10, humidity and cumulated wind speed are selected as input to train the LSTM for modeling the road visibility, and the Adam algorithm is used to optimize the model. According to the visibility and illuminance, the smart street lamp control approach adopts normal brightness and high color temperature lighting modes in high visibility condition to effectively saving energy, and applies higher brightness output and lower color temperature in low visibility condition to enhance the fog penetration ability and ensure the road illumination meets the requirement. Experimental analysis demonstrates that the NRMSE, MAE and R(2 )obtained by the proposed model are 0.13194, 0.69785 km and 0.85725, respectively, which is superior to other compared approaches. Additional, the studied method can save 19% energy comparing with the conventional timing control method.

关键词(KeyWords): 智慧路灯;长短期记忆神经网络;自适应控制;节能;能见度建模
smart street lamp;LSTM;adaptive control;energy saving;visibility modeling

Abstract:

Keywords:

基金项目(Foundation): 福建省自然科学基金“基于多源数据特征分析的光伏阵列故障诊断方法研究”(批准号:2018J01774);; 福州市科技计划项目“基于物联网的智慧道路资源综合管理平台的研发及应用”(批准号:2021-P-059)

作者(Authors): 郑凯;林培杰;赖云锋;程树英;陈志聪;吴丽君;
ZHENG Kai;LIN Peijie;LAI Yunfeng;CHENG Shuying;CHEN Zhicong;WU Lijun;College of Physics and Information Engineering, Fuzhou University;

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享