结合日光的室内自适应照明方法Daylight Adaptive Smart Indoor Lighting Method
渠吉庆,孙科学,许海兵
QU Jiqing,SUN Kexue,XU Haibing
摘要(Abstract):
针对能源紧缺和高质量照明需求的问题,提出一种结合日光的室内自适应照明方法。首先建立以最小化能源消耗为目标,以平均照度和均匀度为约束条件的非线性约束数学模型。其次,使用粒子群优化算法(Particle Swarm Optimization, PSO)求解各个灯具的亮度,该方法考虑了室内光源布局和光照传感器布局因素。最后,将该方法与人工神经网络(Artificial Neural Networks, ANN)方法进行对比。结果显示,优化方法在能源消耗和照明质量上均胜于人工神经网络方法。
In oder to address the problems of energy scarcity and the need for high quality lighting, a daylight adaptive smart indoor lighting method is proposed. Firstly, a non-linear constrained mathematical model is developed with the objective of minimizing energy consumption and with average illuminance and uniformity as constraints. Then, the lighting levels of luminaires are solved using Particle Swarm Optimization(PSO). The method takes into account the layout of the indoor light sources and the layout of the light sensors. Finally, the method is compared with the Artificial Neural Networks(ANN) method. The results show that the optimization method outperforms the ANN method in terms of energy consumption and lighting quality.
关键词(KeyWords):
智能照明;自适应调节;优化方法;粒子群优化算法
smart lighting;adaptive adjustment;optimization method;Particle Swarm Optimization
基金项目(Foundation): 江苏省大学生创新训练计划(SYB2021017);; 南京邮电大学国自孵化项目(NY220013)
作者(Author):
渠吉庆,孙科学,许海兵
QU Jiqing,SUN Kexue,XU Haibing
参考文献(References):
- [1] Van Duijnhoven J,Aarts M P J,Kort H S M.Personal lighting conditions of office workers:an exploratory field study[J].Lighting Research & Technology,2021,53(4):285-310.
- [2] 罗路雅,邵戎镝,郝洛西.上海地区办公空间视觉显示终端作业照明现状调研与分析[J].照明工程学报,2022,33(4):99-106.
- [3] 郝洛西,曹亦潇,崔哲,等.光与健康的研究动态与应用展望[J].照明工程学报,2017,28(6):1-15.
- [4] 张弛,蔺倾程,朱炜,等.基于视觉图像的城市照明美学评价研究[J].照明工程学报,2022,33(3):99-103.
- [5] Carli R,Dotoli M.A dynamic programming approach for the decentralized control of energy retrofit in large-scale street lighting systems[J].IEEE Transactions on Automation Science and Engineering,2020,17(3):1140-1157.
- [6] 肖辉,陈小双,彭玲,等.基于天然采光的办公建筑健康光环境研究[J].照明工程学报,2015,26(1):6-10.
- [7] Qu J Q,Xu Q L,Sun K X.Optimization of indoor luminaire layout for general lighting scheme using improved particle swarm optimization[J].Energies,2022,15(4):1482.
- [8] 孙科学,渠吉庆.基于线性优化模糊C均值算法和人工神经网络的光照传感器布局方法[J].电子与信息学报,2022,44:1-8.
- [9] Afshari S,Mishra S,Julius A,et al.Modeling and feedback control of color-tunable LED lighting systems[C]//2012 American Control Conference (ACC).IEEE,2012.
- [10] Pandharipande A,Caicedo D.Smart indoor lighting systems with luminaire-based sensing:a review of lighting control approaches[J].Energy and Buildings,2015,104:369-377.
- [11] Caicedo D,Li S,Pandharipande A.Smart lighting control with workspace and ceiling sensors[J].Lighting Research & Technology,2017,49(4):446-460.
- [12] Bouzid S,Mbarki M,Dridi C,et al.Smart adaptable indoor lighting system (SAILS)[C]//2019 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS).IEEE,2019.
- [13] Reinhart C F.Lightswitch-2002:a model for manual and automated control of electric lighting and blinds[J].Solar Energy,2004,77(1):15-28.
- [14] Park J Y,Dougherty T,Fritz H,et al.LightLearn:an adaptive and occupant centered controller for lighting based on reinforcement learning[J].Building and Environment,2019,147:397-414.
- [15] Seyedolhosseini A,Modarressi M,Masoumi N,et al.Efficient photodetector placement for daylight-responsive smart indoor lighting control systems[J].Journal of Building Engineering,2021,42:103013.
- [16] Kennedy J,Eberhart R.Particle swarm optimization[C]//Proceedings of ICNN’95-International Conference on Neural Networks.IEEE,1995.
- [17] Guo J N,Zhang J,Zhang Y Y,et al.Joint multi-LED dimming control scheme based on the additively uniquely decomposable constellation group[J].Optics Communications,2021,495:127053.
- [18] Shi Y,Eberhart R.A modified particle swarm optimizer[C]//1998 IEEE International Conference on Evolutionary Computation Proceedings.IEEE,1998.