照明工程学报

2023, v.34(01) 16-21

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

结合日光的室内自适应照明方法
Daylight Adaptive Smart Indoor Lighting Method

渠吉庆,孙科学,许海兵
QU Jiqing,SUN Kexue,XU Haibing

摘要(Abstract):

针对能源紧缺和高质量照明需求的问题,提出一种结合日光的室内自适应照明方法。首先建立以最小化能源消耗为目标,以平均照度和均匀度为约束条件的非线性约束数学模型。其次,使用粒子群优化算法(Particle Swarm Optimization, PSO)求解各个灯具的亮度,该方法考虑了室内光源布局和光照传感器布局因素。最后,将该方法与人工神经网络(Artificial Neural Networks, ANN)方法进行对比。结果显示,优化方法在能源消耗和照明质量上均胜于人工神经网络方法。
In oder to address the problems of energy scarcity and the need for high quality lighting, a daylight adaptive smart indoor lighting method is proposed. Firstly, a non-linear constrained mathematical model is developed with the objective of minimizing energy consumption and with average illuminance and uniformity as constraints. Then, the lighting levels of luminaires are solved using Particle Swarm Optimization(PSO). The method takes into account the layout of the indoor light sources and the layout of the light sensors. Finally, the method is compared with the Artificial Neural Networks(ANN) method. The results show that the optimization method outperforms the ANN method in terms of energy consumption and lighting quality.

关键词(KeyWords): 智能照明;自适应调节;优化方法;粒子群优化算法
smart lighting;adaptive adjustment;optimization method;Particle Swarm Optimization

Abstract:

Keywords:

基金项目(Foundation): 江苏省大学生创新训练计划(SYB2021017);; 南京邮电大学国自孵化项目(NY220013)

作者(Author): 渠吉庆,孙科学,许海兵
QU Jiqing,SUN Kexue,XU Haibing

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享